fredag 16 maj 2008

Phytate Hydrolysis by Phytase in Cereals; Effects on In Vitro Estimation of Iron Availability

Soaking: "Phytate (inositol hexaphosphate) hydrolysis by endogenous and exogenous phytases was studied for their effect on increasing iron availability in cereals. Wheat bran and whole meal flours of rye and oats were soaked at optimal conditions for phytase activity (55°C, pH 5) for different time intervals. Phytate and its degradation products were determined by HPLC and related to iron solubility under simulated physiological conditions. Small amounts of phytate (< lμmol/g) had a strong negative effect on iron solubility. When inositol hexa- and pentaphosphates of wheat bran and rye flour were completely hydrolyzed by activating endogenous phytase, iron solubility under simulated physiological conditions increased from 3 to 53% (wheat) and 5 to 21% (rye). Addition of wheat phytase to uncooked oatmeal increased iron solubility from 4 to 11 and in precooked to 18%, while endogenous phytase of uncooked oatmeal had less effect on phytate digestion and iron solubility.Phytate (inositol hexaphosphate) hydrolysis by endogenous and exogenous phytases was studied for their effect on increasing iron availability in cereals. Wheat bran and whole meal flours of rye and oats were soaked at optimal conditions for phytase activity (55°C, pH 5) for different time intervals. Phytate and its degradation products were determined by HPLC and related to iron solubility under simulated physiological conditions. Small amounts of phytate (< lμmol/g) had a strong negative effect on iron solubility. When inositol hexa- and pentaphosphates of wheat bran and rye flour were completely hydrolyzed by activating endogenous phytase, iron solubility under simulated physiological conditions increased from 3 to 53% (wheat) and 5 to 21% (rye). Addition of wheat phytase to uncooked oatmeal increased iron solubility from 4 to 11 and in precooked to 18%, while endogenous phytase of uncooked oatmeal had less effect on phytate digestion and iron solubility."

måndag 12 maj 2008

Garlic

Garlic: to promote health and testosterone production:

"Garlic, a cousin to the onion, is rich in allicin, diallyl disulphide, diallyl trisulfide and other sulfur-containing compounds that provide the numerous health benefits that garlic imparts, such as fighting cancer, heart disease and even the common cold. Less known is garlic’s ability to stimulate testosterone production and inhibit cortisol production. Before workouts, garlic can help to boost testosterone when you need it most and blunt the cortisol response that normally accompanies exercise and limits testosterone’s anabolic effects."